Accounting for Movement Increases Sensitivity in Detecting Brain Activity in Parkinson's Disease
نویسندگان
چکیده
Parkinson's disease (PD) is manifested by motor impairment, which may impede the ability to accurately perform motor tasks during functional magnetic resonance imaging (fMRI). Both temporal and amplitude deviations of movement performance affect the blood oxygenation level-dependent (BOLD) response. We present a general approach for assessing PD patients' movement control employing simultaneously recorded fMRI time series and behavioral data of the patients' kinematics using MR-compatible gloves. Twelve male patients with advanced PD were examined with fMRI at 1.5T during epoch-based visually paced finger tapping. MR-compatible gloves were utilized online to quantify motor outcome in two conditions with or without dopaminergic medication. Modeling of individual-level brain activity included (i) a predictor consisting of a condition-specific, constant-amplitude boxcar function convolved with the canonical hemodynamic response function (HRF) as commonly used in fMRI statistics (standard model), or (ii) a custom-made predictor computed from glove time series convolved with the HRF (kinematic model). Factorial statistics yielded a parametric map for each modeling technique, showing the medication effect on the group level. Patients showed bilateral response to levodopa in putamen and globus pallidus during the motor experiment. Interestingly, kinematic modeling produced significantly higher activation in terms of both the extent and amplitude of activity. Our results appear to account for movement performance in fMRI motor experiments with PD and increase sensitivity in detecting brain response to levodopa. We strongly advocate quantitatively controlling for motor performance to reach more reliable and robust analyses in fMRI with PD patients.
منابع مشابه
Investigating effect of chamomile hydroalcoholic extract on movement disorders in the animal model of Parkinson's disease
Background & Aim:Parkinson's disease (PD) is a kind of disorder in the nervous system, which is characterized with multiple movement disorders. Factors such as oxidative stress are the most important causes for the degeneration of dopaminergic neurons in the substantia nigra and occurrence of Parkinson's disease. Thus, medications that have antioxidant functions could be an int...
متن کاملInvestigating effect of chamomile hydroalcoholic extract on movement disorders in the animal model of Parkinson's disease
Background & Aim:Parkinson's disease (PD) is a kind of disorder in the nervous system, which is characterized with multiple movement disorders. Factors such as oxidative stress are the most important causes for the degeneration of dopaminergic neurons in the substantia nigra and occurrence of Parkinson's disease. Thus, medications that have antioxidant functions could be an int...
متن کاملEvaluating the effect of α-pinene on motor activity, avoidance memory and lipid peroxidation in animal model of Parkinson disease in adult male rats
Background and objectives: Parkinson's disease (PD) is a common neuropathologic disorder that is caused by degeneration of dopaminergic neurons of dense part of nigra. Oxidative stress has been found in the pathophysiology of PD. Since α-pinene has strong anti-oxidant effects, the purpose of this research was to study its effects on movement disorders and memory and lipid perox...
متن کاملP111: Effect of Human Neural Stem Cells on Neural Hyperactivity in Kindeling Rat Models
The excessive electrical activity of neurons is reported in many diseases including: Parkinson's disease, Alzheimer's disease, and Epilepsy. Electrical overactivity in hippocampus accelerates the depletion of neural stem cell (NSC) and impairs the neurogenesis in hippocampus. It is believed that neurogenesis in hippocampus improves the cognitive functions. In this experiment, we use kindled mod...
متن کاملThe antioxidant effect of hesperetin and nano-hesperetin on activity of catalase and superoxide dismutase enzymes in the hippocampus of animal model of Parkinson's disease
Background and objectives: Hesperetin flavanone is a natural bioflavonoid found abundantly in citrus fruits with antioxidant and anti-inflammatory properties. Nano sizing techniques improve the bioavailability of poorly soluble drugs such as hesperetin. Main feature of Parkinson's disease is the degeneration of dopaminergic neurons in the substantia nigra. The rate of oxidative...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2012